2 resultados para champignons endophytes

em Universidad de Alicante


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant crop yields are negatively conditioned by a large set of biotic and abiotic factors. An alternative to mitigate these adverse effects is the use of fungal biological control agents and endophytes. The egg-parasitic fungus Pochonia chlamydosporia has been traditionally studied because of its potential as a biological control agent of plant-parasitic nematodes. This fungus can also act as an endophyte in monocot and dicot plants, and has been shown to promote plant growth in different agronomic crops. An Affymetrix 22K Barley GeneChip was used in this work to analyze the barley root transcriptomic response to P. chlamydosporia root colonization. Functional gene ontology (GO) and gene set enrichment analyses showed that genes involved in stress response were enriched in the barley transcriptome under endophytism. An 87.5 % of the probesets identified within the abiotic stress response group encoded heat shock proteins. Additionally, we found in our transcriptomic analysis an up-regulation of genes implicated in the biosynthesis of plant hormones, such as auxin, ethylene and jasmonic acid. Along with these, we detected induction of brassinosteroid insensitive 1-associated receptor kinase 1 (BR1) and other genes related to effector-triggered immunity (ETI) and pattern-triggered immunity (PTI). Our study supports at the molecular level the growth-promoting effect observed in plants endophytically colonized by P. chlamydosporia, which opens the door to further studies addressing the capacity of this fungus to mitigate the negative effects of biotic and abiotic factors on plant crops.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some endophytic fungal genera in Vitis vinifera, including Acremonium, have been reported as antagonists of Plasmopara viticola. Endophytic Acremonium isolates from an asymptomatic grapevine cultivar Inzolia from Italy were identified by morphological features and multigene phylogenies of ITS, 18S and 28S genes, and their intra-specific genomic diversity was analyzed by RAPD analysis. Culture filtrates (CFs) obtained from Acremonium isolates were tested in vitro for their inhibitory activity against the P. viticola sporangia germination. Among 94 isolates, 68 belonged to the Acremonium persicinum and 26 to the Acremonium sclerotigenum. RAPD analysis grouped the A. persicinum isolates into 15 clusters and defined 31 different strains. The A. sclerotigenum isolates, instead, were clustered into 22 groups and represented 25 strains. All A. persicinum CFs inhibited sporangia germination of P. viticola, while not all those of A. sclerotigenum had inhibitory effect. A different degree of inhibition was observed between strains of the same species, while some strains of different species showed identical inhibitory effect. No correlation was found between RAPD groups and inhibitory activity in both Acremonium species.